On the Height of Calabi-Yau Varieties in Positive Characteristic

نویسندگان

  • G. van der Geer
  • T. Katsura
  • Peter Schneider
چکیده

We study invariants of Calabi-Yau varieties in positive characteristic, especially the height of the Artin-Mazur formal group. We illustrate these results by Calabi-Yau varieties of Fermat and Kummer type. 2000 Mathematics Subject Classification: 14J32, 14L05, 14F

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic and Geometry of Algebraic Varieties with Special Emphasis on Calabi–yau Varieties and Mirror Symmetry

Chen, Xi (University of Alberta) Xiao’s Conjecture on Canonically Fibered Surfaces Abstract: In 1988, Gang Xiao proposed a list of open problems on algebraic surfaces. Many of these remain open to this day. One of the problems concerns the maximal relative genus of a canonically fibered surface. In this talk, I will talk about my proof of this conjecture. Garcia, Natalia (Queen’s University) Cu...

متن کامل

Isolated Rational Curves on K 3 - Fibered Calabi – Yau Threefolds

In this paper we study 15 complete intersection K3-fibered Calabi–Yau variety types in biprojective space P1 × P These are all the CICY-types that are K3 fibered by the projection on the second factor. We prove existence of isolated rational curves of bidegree (d, 0) for every positive integer d on a general Calabi– Yau variety of these types. The proof depends heavily on existence theorems for...

متن کامل

Rigidity for Families of Polarized Calabi-yau Varieties

In this paper, we study the analogue of the Shafarevich conjecture for polarized Calabi-Yau varieties. We use variations of Hodge structures and Higgs bundles to establish a criterion for the rigidity of families. We then apply the criterion to obtain that some important and typical families of Calabi-Yau varieties are rigid, for examples., Lefschetz pencils of Calabi-Yau varieties, strongly de...

متن کامل

m at h . A G ] 1 S ep 2 00 1 THE T 1 - LIFTING THEOREM IN POSITIVE CHARACTERISTIC STEFAN

Replacing symmetric powers by divided powers and working over Witt vectors instead of ground fields, I generalize Kawamata’s T -lifting theorem to characteristic p > 0. Combined with the work of Deligne–Illusie on degeneration of the Hodge–de Rham spectral sequences, this gives unobstructedness for certain Calabi–Yau varieties with free crystalline cohomology modules.

متن کامل

The cone conjecture for Calabi-Yau pairs in dimension two

A central idea of minimal model theory as formulated by Mori is to study algebraic varieties using convex geometry. The cone of curves of a projective variety is defined as the convex cone spanned by the numerical equivalence classes of algebraic curves; the dual cone is the cone of nef line bundles. For Fano varieties (varieties with ample anticanonical bundle), these cones are rational polyhe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003