On the Height of Calabi-Yau Varieties in Positive Characteristic
نویسندگان
چکیده
We study invariants of Calabi-Yau varieties in positive characteristic, especially the height of the Artin-Mazur formal group. We illustrate these results by Calabi-Yau varieties of Fermat and Kummer type. 2000 Mathematics Subject Classification: 14J32, 14L05, 14F
منابع مشابه
Arithmetic and Geometry of Algebraic Varieties with Special Emphasis on Calabi–yau Varieties and Mirror Symmetry
Chen, Xi (University of Alberta) Xiao’s Conjecture on Canonically Fibered Surfaces Abstract: In 1988, Gang Xiao proposed a list of open problems on algebraic surfaces. Many of these remain open to this day. One of the problems concerns the maximal relative genus of a canonically fibered surface. In this talk, I will talk about my proof of this conjecture. Garcia, Natalia (Queen’s University) Cu...
متن کاملIsolated Rational Curves on K 3 - Fibered Calabi – Yau Threefolds
In this paper we study 15 complete intersection K3-fibered Calabi–Yau variety types in biprojective space P1 × P These are all the CICY-types that are K3 fibered by the projection on the second factor. We prove existence of isolated rational curves of bidegree (d, 0) for every positive integer d on a general Calabi– Yau variety of these types. The proof depends heavily on existence theorems for...
متن کاملRigidity for Families of Polarized Calabi-yau Varieties
In this paper, we study the analogue of the Shafarevich conjecture for polarized Calabi-Yau varieties. We use variations of Hodge structures and Higgs bundles to establish a criterion for the rigidity of families. We then apply the criterion to obtain that some important and typical families of Calabi-Yau varieties are rigid, for examples., Lefschetz pencils of Calabi-Yau varieties, strongly de...
متن کاملm at h . A G ] 1 S ep 2 00 1 THE T 1 - LIFTING THEOREM IN POSITIVE CHARACTERISTIC STEFAN
Replacing symmetric powers by divided powers and working over Witt vectors instead of ground fields, I generalize Kawamata’s T -lifting theorem to characteristic p > 0. Combined with the work of Deligne–Illusie on degeneration of the Hodge–de Rham spectral sequences, this gives unobstructedness for certain Calabi–Yau varieties with free crystalline cohomology modules.
متن کاملThe cone conjecture for Calabi-Yau pairs in dimension two
A central idea of minimal model theory as formulated by Mori is to study algebraic varieties using convex geometry. The cone of curves of a projective variety is defined as the convex cone spanned by the numerical equivalence classes of algebraic curves; the dual cone is the cone of nef line bundles. For Fano varieties (varieties with ample anticanonical bundle), these cones are rational polyhe...
متن کامل